

OTIC FILE COPY

AD-A187 113 CUMENTATION				N PAGE			Form Approved OMB No. 0704-0188	
-				1b. RESTRICTIVE	MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY				3. DISTRIBUTION/AVAILABILITY OF REPORT				
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE				Approved for public release; distribution unlimited.				
4. PERFORMI	NG ORGANIZAT	TION REPORT NUME	BER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)				
				AF	OSR TR	87-	1 5 9 0	
6a. NAME OF	PERFORMING	ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION		
6c. ADDRESS	(City, State, an	nd ZIP Code)		7b. ADDRESS (Co	ity, State, and ZIP	Code)		
ORGANIZATION (If app			8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER A FOSI2-86-0162				
8c. ADDRESS (City, State, and ZIP Code)			10. SOURCE OF FUNDING NUMBERS					
				PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.	
11. TITLE (Inc	lude Security C	lassification)		1	.1	1	· · · · · · · · · · · · · · · · · · ·	
13a, TYPE OF		Mah Tinas	SOUPPEO.	LA DATE OF SER	207 /V 4441	0-1 lis	PAGE COUNT	
138. THE OF	- REPORT	136 TIME (FROM		14. DATE OF REPO	ORT (Year, Month,	, Day) 13.	PAGE COUNT	
16 SUPPLEM	ENTARY NOTA	TION						
17.	COSATI	CODES	18. SUBJECT TERMS	(Continue on rever	se if necessary and	d identify b	y block number)	
FIELD	GROUP	SUB-GROUP	-					
19 ARSTRAC	T (Continue on	reverse if necessar	y and identify by block r	number)				
	(continue on	reverse ii necessar	y and lockiny by block i	umber)		NOV O O	TE 1337	
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS				21 ABSTRACT SE	21 ABSTRACT SECURITY CLASSIFICATION			
				22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL				

NOTE ON BOUNDARY STABILIZATION OF WAVE EQUATIONS 1

John E. Lagnese

Department of Mathematics Georgetown University Washington, DC 20057

i uni posti i Usos		^ ! -	-	\	
Tit	trib	tion/	4		
		dlity	Cod	es	
		11 ai			1
Dis	t	Speci	a1		
A	-1				

COPY INSPECTED 6

AMS subject classification: 93D15, 35L05

Research supported by the Air Force Office of Scientific Research through grant AFOSR-86-0162.

Abstract. An energy decay rate is obtained for solutions of wave type equations in a bounded region in Rⁿ whose boundary consists partly of a nontrapping reflecting surface and partly of an energy absorbing surface. Unlike most previous results on this problem, the results presented here are valid for regions having connected boundaries.

Key words. Wave equations, boundary stabilization, exponential stability.

Let Ω be a bounded, open ,connected set in \mathbb{R}^n (n\gamma2) and Γ denote its boundary. Assume that Γ is piecewise smooth and consists of two parts, Γ_0 and Γ_1 , with $\Gamma_1 \neq \emptyset$ and relatively open in Γ , and Γ_0 either empty or having a non-empty interior. We set $\Sigma_0 = \Gamma_0 \times (0,\infty)$, $\Sigma_1 = \Gamma_1 \times (0,\infty)$. Let k be an $L^\infty(\Gamma_1)$ function satisfying $k(x)\geq 0$ almost everywhere on Γ_1 . Consider the problem

(1)
$$w'' - \Delta w = 0 \quad \text{in } \Omega \times (0, \infty),$$

(2)
$$\partial w/\partial v = -kw'$$
 on Σ_1 , $w = 0$ on Σ_0 .

(3)
$$w(0) = w^{0}, \quad w'(0) = w^{1} \quad \text{in } \Omega$$

where '=d/dt and ν is the unit normal of Γ pointing towards the exterior of Ω .

Associated with each solution of (1.1) is its total <u>energy</u> at time t:

$$E(t) = \frac{1}{2} \int_{\Omega} (w^{2} + |\nabla w|^{2}) dx.$$

A simple calculation shows that

$$E'(t) = -\int_{\Gamma_1} kw^2 d\Gamma \le 0.$$

hence E(t) is nonincreasing. The question of interest for us is the following: Under what conditions is it true that there is an <u>exponential</u> decay rate for E(t), i.e.,

(4)
$$E(t) \leq Ce^{-\omega t}E(0), \qquad t \geq 0$$

for some positive ω .

CONTRACTOR DESCRIPTION PROPERTY AND ADDRESS.

The first person to establish (4) for solutions of (1)-(3) was C.

Chen [1], under the following assumptions: $k(x) \ge k_0 > 0$ on Γ_1 , and there is a point $x_0 \in \mathbb{R}^n$ such that

$$(5) (x-x_0) \cdot \nu \leq 0, \quad x \in \Gamma_0.$$

(6)
$$(x \rightarrow x_0) \cdot v \geq \tau > 0, \quad x \in \Gamma_1.$$

Chen slightly relaxed (5) and (6) in a later paper [2]. The most general result to date in terms of the assumed geometrical conditions on Γ appears in [5]. There it is proved that (4) is valid provided there exists a vector field $h(x)=[h_1(x),\cdots,h_n(x)]\in C^2(\Omega)$ such that

(7)
$$h \cdot v \leq 0 \quad \text{on} \quad \Gamma_{0}.$$

PATECCO (PESSOS PROCESSES O SPICEO ESPECIO. DECECTORA DOCTERA O SPICES O SPICES DE LA PESSOS.

(8)
$$h \cdot v \geq \tau > 0 \quad \text{on} \quad \Gamma_1.$$

(9) the matrix $(\partial h_i/\partial x_j + \partial h_j/\partial x_i)$ is positive definite on Ω . This last result has subsequently been reproved by Lasiecka-Triggiani [7] and Triggiani [9] using methods different from those in [5]. In all of the papers cited, the estimate (4) was obtained from estimates on $\int_0^\infty E(t)dt$ by employing a result of Datko [3] (later extended by Pazy [8]). Thus in all cases the constants C and ω are not given explicitly in terms of problem data.

An important observation is that when Γ is smooth, the conditions (5) and (6) (resp., (7) and (8)) together force $\Gamma_0 \cap \Gamma_1 = \emptyset$. Thus if $\Gamma_0 \neq \emptyset$, the above results cannot apply to regions Ω having a connected boundary. However, in a recent paper [4], Kormornik and Zuazua succeeded in relaxing condition (6) of Chen to

(10)
$$(x \rightarrow x_0) \cdot v \ge 0 \quad \text{on } \Gamma_1$$

thus allowing for regions with smooth connected boundaries, but at the expense of replacing the boundary condition (2a) by

(11)
$$\partial w/\partial v = -((x-x_0) \cdot v)w' \quad \text{on } \Sigma_1.$$

In addition, the proof in [4] gives explicit estimates of the constants C and ω in (4) in terms of the geometry of Ω , more specifically, in terms of the constants μ_0 and μ_1 which appear in (16), (17) below.

The purpose of this paper is to extend the result of [4] in two ways: first, by replacing the specific vector field $\mathbf{x} - \mathbf{x}_0$ in (5) and (10) by a general vector field $\mathbf{h}(\mathbf{x})$ satisfying (7), (9), and

(12)
$$h \cdot \nu \geq 0 \quad \text{on } \Gamma_1,$$

and, second, by replacing the boundary condition (11) by

(13)
$$\partial w/\partial v = -k^{\frac{1}{2}}(h \cdot v)w' \quad \text{on } \Sigma$$

where $k \in L^{\infty}(\Gamma_1)$ satisfies $k \not \geq k_0 > 0$ on Γ_1 . Note that if $h \cdot \nu \geq \gamma > 0$ on Γ_1 , the boundary condition (2a) may be written as (13) with $k \not = k/(h \cdot \nu)$. Hence, in this situation, we recover (a sharpened form of) the main result of [5] (see Theorem below). Also, as in [4], we will obtain explicit estimates on the constants C and ω in (4) in terms on constants associated with the geometry of Ω , the gain $k \not = k$ and the vector field h.

The formal statements of the two results to be proved are as follows. THEOREM. Let w be a regular solution to (1), (2b) and (13). Then there is a constant ω (which may be explicitly estimated) such that

$$\int_{0}^{\infty} E(s)ds \le (1/\omega)E(0),$$

$$\int_{t}^{\infty} E(s)ds \le e^{-\omega t} \int_{0}^{\infty} E(s)ds, \quad t \ge 0.$$

COROLLARY. Under the hypotheses of the Theorem,

recessas — recorded acedeseal recorded by the particles of the particles o

$$E(t) \le e \cdot e^{-\omega t} E(0), \quad t \ge 1/\omega.$$

Remark 1. If the initial data (3) satisfies $w^0 \in H^1(\Omega)$, $w^1 \in L^2(\Omega)$, w=0 on Γ_0 , it is well known that (1)-(3) has a unique weak solution such that $(w,w') \in C([0,\infty); H^1(\Omega) \times L^2(\Omega))$, w=0 on Σ_0 in the sense of traces, and $k^{1/2}w' \in L^2(0,T; L^2(\Gamma_1))$, for every T>0. The proof of Theorem requires

additional regularity of w. namely $(w,w')\in C([0,\infty);H^2(\Omega)\times H^1(\Omega))$. When $\Gamma_0\cap \Gamma_1\neq \emptyset$, this latter requirement may not be satisfied even for smooth data and boundary since singularities may develop at points on $\Gamma_0\cap \Gamma_1$. On the other hand, when $\Gamma_0\cap \Gamma_1=\emptyset$ the solution will always possess the necessary regularity if $w^0\in H^2(\Omega)$, $w^1\in H^1(\Omega)$, $w^0=0$ on Γ_0 , $\partial w^0/\partial \nu+kw^1=0$ on Γ_1 . Remark 2. The Theorem and Corollary may be extended to generalized wave equations with time independent coefficients as in [5] but under the weaker condition (12) and also to linear elastodynamic systems (cf. p. 167 of [5] and also [6]). We omit details.

Proof of Corollary. Since E(t) is nonincreasing, for every $\tau > 0$

$$\tau E(t+\tau) \leq \int_{t}^{\infty} E(s) ds \leq (1/\omega) e^{-\omega t} E(0).$$

or

(14)
$$E(t+\tau) \leq (e^{\omega \tau}/\omega \tau)e^{-\omega(t+\tau)}E(0), \quad \tau > 0.$$

The first factor on the right has its minimum at $\tau=1/\omega$ and for this value of τ (14) becomes

$$E(t+1/\omega) \le e \cdot e^{-\omega(t+1/\omega)}E(0), \quad t \ge 0.$$

<u>Proof of Theorem</u>. We assume that $\Gamma_0 \neq \phi$. The argument may easily be modified to handle the opposite case as in [5] or [9].

Define the matrix $H=(\partial h_i/\partial x_j + \partial h_j/\partial x_i)$. By assumption we have

(15) $H\xi \cdot \xi \geq h_0 |\xi|^2, \quad \xi \in \mathbb{R}^n, \ x \in \Omega, \ h_0>0.$

Since multiplication of h by a positive constant leaves Γ_0 and Γ_1 invariant, we may (and do) assume that $h_0=1$ in (15).

Define constants μ_0 and μ_1 by

(17)
$$\int_{\Omega} v^2 dx \le \mu_1 \int_{\Omega} |\nabla v|^2 dx$$

for all $v \in H^1(\Omega)$ such that v = 0 on I_{Ω} . For $\epsilon > 0$ and fixed, define

$$F_{\mu}(t) = E(t) + \epsilon \rho(t)$$

where

$$\rho(t) = 2(w', h \cdot \nabla w) + ((h_{j,j} - 1)w, w').$$

We note that

$$|\rho(t)| \leq C_0 E(t)$$
.

hence

(18)
$$(1-\epsilon C_0)E(t) \leq F_{\epsilon}(t) \leq (1+\epsilon C_0)E(t)$$

where C_0 depends on h and μ_1 . We will show that for ϵ sufficiently small,

(19)
$$F'_{\epsilon}(t) \leq -\epsilon E(t) + C\epsilon \int_{\Omega} w^2 dx$$

where C depends on h, μ_0 and μ_1 .

One has

(20)
$$\rho'(t) = 2(w'', h \cdot \nabla w) + 2(w', h \cdot \nabla w') + ((h_{j,j} - 1)w', w') + ((h_{j,j} - 1)w, w'').$$

From (1), (2) we have

(21)
$$(\mathbf{w}'',\mathbf{v}) + (\nabla \mathbf{w},\nabla \mathbf{v}) + b(\mathbf{w}',\mathbf{v}) - \int_{\Gamma_0} (\partial \mathbf{w}/\partial v) \mathbf{v} d\Gamma = 0$$

for every $v \in H^1(\Omega)$, where

$$b(w',v) = \int_{\Gamma_1} k^{*}(h \cdot v) w' v d\Gamma.$$

We use (21) to calculate $(w'',h\cdot\nabla w)$ and ((h,j,j-1)w,w'') in (20). One has

(22)
$$(\mathbf{w}'', \mathbf{h} \cdot \nabla \mathbf{w}) = -(\nabla \mathbf{w}, \nabla (\mathbf{h} \cdot \nabla \mathbf{w})) - \mathbf{b}(\mathbf{w}', \mathbf{h} \cdot \nabla \mathbf{w}) + \int_{\Gamma_0} (\partial \mathbf{w}/\partial \nu) \mathbf{h} \cdot \nabla \mathbf{w} d\Gamma.$$

A direct calculation gives

(23)
$$(\nabla \mathbf{w}, \nabla (\mathbf{h} \cdot \nabla \mathbf{w})) = \int_{\Omega} \mathbf{h}_{i,j} \mathbf{w}_{i} \mathbf{w}_{j} dx - (1/2) \int_{\Omega} \mathbf{h}_{j,j} |\nabla \mathbf{w}|^{2} dx + (1/2) \int_{\Gamma} \mathbf{h} \cdot \mathbf{v} |\nabla \mathbf{w}|^{2} d\Gamma.$$

Similarly,

(24)
$$((h_{j,j}-1)w,w'') = -\int_{\Omega} (h_{j,j}-1) |\nabla w|^2 dx - \int_{\Omega} h_{j,ij}ww_i dx - b(w',(h_{i,j}-1)w).$$

We also have

(25)
$$(w', h \cdot \nabla w') = (1/2) \int_{\Gamma_1} (h \cdot v) w'^2 d\Gamma - (1/2) \int_{\Omega} h_{j,j} w'^2 dx.$$

Use of (22) - (25) in (20) gives

(26)
$$\rho'(t) = -2\int_{\Omega} h_{i,j} w_{i} w_{j} dx + \int_{\Omega} |\nabla w|^{2} dx - \int_{\Omega} w^{2} dx - \int_{\Omega} h_{j,ij} w_{i} dx - \int_{\Gamma} (h \cdot v) |\nabla w|^{2} d\Gamma + 2\int_{\Gamma_{0}} (\partial w/\partial v) h \cdot \nabla w d\Gamma + \int_{\Gamma_{1}} (h \cdot v) w^{2} d\Gamma - 2b(w', h \cdot \nabla w) - b(w', (h_{j,j}-1)w).$$

The integrals over Γ_0 , viz.

$$(27) \qquad 2\int_{\Gamma_{0}} (\partial w/\partial v) h \cdot \nabla w d\Gamma - \int_{\Gamma_{0}} h \cdot v |\nabla w|^{2} d\Gamma = \int_{\Gamma_{0}} h \cdot v (\partial w/\partial v)^{2} d\Gamma \le 0.$$

We also have the estimates

(28)
$$|b(\mathbf{w}', \mathbf{h} \cdot \nabla \mathbf{w})| = |\int_{\Gamma_1} \mathbf{k}^{\mathbf{w}} (\mathbf{h} \cdot \mathbf{v}) \mathbf{w}' (\mathbf{h} \cdot \nabla \mathbf{w}) d\Gamma |$$

$$\leq \int_{\Gamma_1} \mathbf{h} \cdot \mathbf{v} |\nabla \mathbf{w}|^2 d\Gamma + C_1 \int_{\Gamma_1} (\mathbf{h} \cdot \mathbf{v}) \mathbf{w}'^2 d\Gamma,$$

$$(29) |b(w', (h_{j,j}-1)w)| \leq C_2/(2\delta) \int_{\Gamma_1} (h \cdot v) w'^2 d\Gamma + (\delta/2) \int_{\Omega} |\nabla w|^2 dx,$$

(30)
$$|\int_{\Omega} h_{1,11} w w_1 dx| \leq C_3 / (2\delta) \int_{\Omega} w^2 dx + (\delta/2) \mu_1 \int |\nabla w|^2 dx$$

where C_1 , C_2 depend on h and k^{\bowtie} , C_3 on h and where $\delta>0$ will be chosen

below. Use of (27) - (30) and (15) (recall that $h_0=1$) in (26) yields

$$\begin{split} \rho'(t) & \leq -\!\!\!\int_{\Omega} \left(w^{,2}\!\!+ \left| \nabla w \right|^2 \right) \! \mathrm{d}x \, + \, \left(\delta/2\right) \! \left(\mu_0\!\!+\!\!\mu_1\right) \!\!\!\int_{\Omega} \left| \nabla w \right|^2 \! \mathrm{d}x \, + \\ & \left(C_1\!\!+\!\!C_2/(2\delta) \, + \, 1\right) \!\!\!\int_{\Gamma_1} \left(h\!\cdot\!\nu\right) \! w^{,2} \! \mathrm{d}\Gamma \, + \, C_3/(2\delta) \!\!\!\int_{\Omega} \left.w^2 \! \mathrm{d}x \right. \end{split}$$

Choosing $\delta = 1/(\mu_0 + \mu_1)$ we obtain

(31)
$$\rho'(t) \leq -\mathbb{E}(t) + C_4 \int_{\Gamma_1} (h \cdot \nu) w^2 dx + C_5 \int_{\Omega} w^2 dx$$

where $C_4 = C_1 + C_2/(2\delta) + 1$, $C_5 = C_3/(2\delta)$. Since $k^* \ge k_0 > 0$ on Γ_1 , we obtain from (31)

$$\begin{split} F_{\epsilon}'(t) &= E'(t) + \epsilon \rho'(t) \\ &= -\int_{\Gamma_1} k^{*}(h \cdot \nu) w^{2} d\Gamma + \epsilon \rho'(t) \\ &\leq -\epsilon E(t) + \epsilon C_{5} \int_{\Omega} w^{2} dx + \int_{\Gamma_1} (\epsilon C_{4} - k_{0}) (h \cdot \nu) w^{2} d\Gamma \\ &\leq -\epsilon E(t) + \epsilon C_{5} \int_{\Omega} w^{2} dx \end{split}$$

provided $\epsilon C_4 \le k_0$. This establishes (19).

Let β>0 and consider

(32)
$$\int_{t}^{\infty} e^{-\beta(s-t)} F_{\epsilon}'(s) ds = -F_{\epsilon}(t) + \beta \int_{t}^{\infty} e^{-\beta(s-t)} F_{\epsilon}(s) ds$$

$$\leq -\epsilon \int_{t}^{\infty} e^{-\beta(s-t)} E(s) ds + \epsilon C_{5} \int_{t}^{\infty} e^{-\beta(s-t)} |w(\cdot,s)|^{2} ds.$$

From (18), $F_{\epsilon}(s)\geq 0$ provided $\epsilon C_0 \leq 1$. From Theorem 2 of [5], we have the estimate

(33)
$$\int_{\cdot}^{\infty} e^{-\beta(s-t)} |w(\cdot,s)|^2 ds \le C_{\eta}^{\times} E(t) + \eta \int_{\cdot}^{\infty} e^{-\beta(t-s)} E(s) ds$$

where $\eta>0$ is arbitrary and C_{η}^{\bowtie} is a constant independent of β . Therefore (32), (33) imply

(34)
$$\epsilon \int_{t}^{\infty} e^{-\beta(s-t)} E(s) ds \leq F_{\epsilon}(t) + \epsilon C_{5} [C_{\eta}^{*} E(t) + \eta \int_{t}^{\infty} e^{-\beta(s-t)} E(s) ds]$$

where $\epsilon = \min(1/C_0, k_0/C_4)$. Choosing $\eta = 1/qC_5$ (q>1) in (34) gives the estimate

(35)
$$\frac{(q-1)\epsilon}{q} \int_{-\epsilon}^{\infty} e^{-\beta(s-t)} E(s) ds \leq F_{\epsilon}(t) + \epsilon C_5 C_{1/q}^{*} E(t) \leq (1+\epsilon K_q) E(t)$$

where $K_q = C_0 + C_5 C_{1/q}^{*}$ does not depend on β . Define $\omega_q = (q-1)\epsilon/q(1+\epsilon K_q)$ and let β =0 in (35) to obtain

(36)
$$\int_{t}^{\infty} E(s)ds \le (1/\omega_{q})E(t), \quad t \ge 0, \quad q > 1.$$

The conclusions of the Theorem with $\omega=\omega_2=\epsilon/2(1+\epsilon K_2)$ (for example) follow easily from (36).

REFERENCES

- [1] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math Pures Appl., 58 (1979), pp 249-274.
- [2] _____, A note on boundary stabilization of the wave equation, SIAM

 J. Control and Opt., 19 (1961), pp. 106-113.
- [3] R. Datko, Extending a theorem of Liapunov to Hilbert spaces, J. Math.

Anal. Appl., 32 (1970), pp. 610-616.

BOUGH HOLOGOGO PROGRADO ANNOTANA ANNOTANA PARAMBANA MANANANA PROGRAMA MANANANA MAKANANA MAKANANA MAKANANA MAKAN

- [4] V. Kormornik and E. Zuazua, C. R. Acad. Sci. Paris, to appear.
- [5] J. Lagnese, <u>Decay of solution of the wave equation in a bounded region</u> with boundary dissipation, J. Diff. Eq., 50 (1983), pp. 163-182.
- [6] ______, Boundary stabilization of linear elastodynamic systems.
- SIAM J. Control and Opt., 21 (1983), pp. 968-984.
- [7] I. Lasiecka and R. Triggiani, <u>Uniform exponential energy decay of the wave equation in a bounded region with L₂(0,∞;L₂(Γ))-feedback control in the <u>Dirichlet boundary condition</u>, J. Diff. Eq., to appear.</u>
- [8] A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space, SIAM J. Math. Anal., 3 (1972), 291-294.
- [9] R. Triggiani, <u>Wave equation on a bounded domain with boundary</u> <u>dissipation:</u> An operator approach, to appear.

END HED. 198 Mil